Point2Vec for Self-Supervised Representation Learning on Point Clouds

Karim Abou Zeid*, Jonas Schult*, Alexander Hermans, Bastian Leibe

Computer Vision Group, Visual Computing Institute
RWTH Aachen University

karim.abou.zeid@rwth-aachen.de

Abstract

Recently, self-supervised pre-training of Transformer ar-
chitectures has made remarkable progress in 2D computer
vision. In particular, data2vec has shown impressive re-
sults using a masked student—teacher approach. How-
ever, it remains open whether such a framework general-
izes to the unique challenges posed by 3D point clouds.
To this end, we extend data2vec to the point cloud do-
main and show promising results on several downstream
tasks. However, our analysis reveals that disclosing posi-
tional information can expose the object’s overall shape to
the student, which hinders data2vec from learning strong
representations. To address this 3D-specific shortcom-
ing, we propose point2vec, which unleashes the full po-
tential of data2vec-like pre-training on point clouds. Our
experiments show that point2vec outperforms other self-
supervised Transformer-based methods on shape classifica-
tion on ModelNet40 and ScanObjectNN. Our results sug-
gest that the learned representations are both transferable
and strong, highlighting the potential of point2vec as a
promising direction for self-supervised learning of point
cloud representations.

1. Introduction

In this work, we address the task of self-supervised rep-
resentation learning of Transformer-based models on 3D
point clouds. Self-supervised training has shown impres-
sive results in natural language processing [7,26], speech
[2,13], and 2D vision [Il,3,6,10,11], enabling learn-
ing of meaningful representations from massive unlabeled
datasets without any human annotations. Only recently, we
have seen self-supervised methods being successfully ap-
plied to Transformer architectures for 2D vision [1,3,11]
and 3D point clouds [18,28,30]. Baevski et al. propose
data2vec [I], a modality-agnostic self-supervised learn-
ing framework showing competitive performance in speech

*Equal contribution.

{schult, hermans, leibe}@vision.rwth-aachen.de

Teacher

i

D Stop Gradient
f (L1
A

- & % Smooth

Fpsl k-NN & E YEMA L1 Loss

o g 7 5 (DD o
ST % "/ (neupme o DEn
GE.,. =L/ " e
P EERED B BED

70000 e (aae) w

Student Decoder

Figure 1. Illustration of our point2vec pre-training method.

recognition, image classification, and natural language un-
derstanding. Data2vec uses a joint-embedding architecture
[1,3, 10] with a student Transformer encoder and a teacher
network parameterized as the exponential moving average
of the student weights. Specifically, the teacher first predicts
latent representations using an uncorrupted view of the in-
put, which the student network then predicts from a masked
view of the same input.

In this work, our aim is to apply data2vec-like pre-
training to point clouds. The key difference to top-
performing Transformer-based approaches for point cloud
representation learning such as Point-MAE [18], Point-
M2AE [30] and Point-BERT [28] is the target represen-
tation. The self-attention in the student Transformer en-
coder of data2vec generates contextualized feature targets
that contain global information of the entire input. In con-
trast, Point-MAE [18] and Point-M2AE [30] explicitly re-
construct only local point cloud patches, and Point-BERT
[28] is restricted to a fixed-sized vocabulary of token rep-
resentations. To apply data2vec [!] on point clouds, we
use the same underlying 3D-specific Transformer model as
Point-BERT [28] and Point-MAE [18]. In experiments, we
show that these modality-specific adaptations to data2vec
already enable competitive performance compared to highly
3D-specific self-supervised approaches [15, 18, 24,28, 30].
Encouraged by these promising results, we perform a subse-
quent analysis that reveals a crucial and point cloud specific

(a) Disclosed Positions (data2vec—pc) (b) Concealed Positions (point2vec)

Figure 2. Leakage Of Positional Information. The center
points ® of masked point patches are associated with the masked
embeddings (Fig. 1, (). (a) data2vec—pc discloses the positions of
masked patches to the student, revealing the chair’s overall shape.
(b) point2vec excludes masked embeddings from the student and
therefore conceals the positions of the masked patches.

shortcoming that restricts data2vec’s representation learn-
ing capabilities: data2vec uses masked embeddings in the
student network which carry positional information. Un-
like images, text, and speech, the positional information in
point clouds contains semantic meaning, namely 3D point
locations (Fig.2). Feeding masked embeddings with po-
sitional information into the student network therefore re-
veals the overall object shape to the student which makes
the masking operation far less effective, as also reported by
Pang et al. [18] in the context of masked autoencoders for
point clouds. Based on this analysis, we propose point2vec
that effectively addresses the leakage of positional infor-
mation to the student and thus unleashes the full poten-
tial of data2vec-like pre-training for point clouds. To this
end, we exclude masked embeddings from the student net-
work. This prevents the overall object shape from be-
ing revealed, while also decreasing the computational cost.
Instead, we introduce a shallow decoder which processes
masked embeddings together with the student’s outputs and
which is trained to regress the representations of the teacher
(Fig. 1). As a result, point2vec learns transferable features
in a self-supervised manner, outperforming top-performing
self-supervised approaches on several downstream tasks.

2. Method

The aim of this work is to unlock the full potential of
data2vec-like [!] pre-training on point clouds by address-
ing point cloud specific challenges. To achieve this, we first
summarize the technical concepts of data2vec (Sec.2.1) and
show how to learn rich representations on point clouds us-
ing data2vec pre-training (Sec.2.2). Finally, we propose
point2vec, which accounts for the point cloud specific limi-
tations of data2vec (Sec. 2.3).

2.1. Data2vec

Data2vec [1] is designed to pre-train Transformer-based
models, which involve a feature encoder that maps the in-
put data to a sequence of embeddings. These embeddings
are subsequently passed to a standard Transformer encoder

to generate the final latent representations. During pre-
training, two versions of the Transformer encoder are kept:
a student and a teacher. The teacher is a momentum en-
coder, i.e. its parameters A track the student’s parameters
0 by being updated after each training step according to
an exponential moving average (EMA) rule [I,3, 10, 12]:
A <« 7A+(1-7)0, where 7 € [0, 1] is the EMA decay rate.
The teacher provides the training targets, which the student
predicts given a corrupted version of the same input.

In a first step, the teacher encodes the uncorrupted in-
put sequence. The training targets are then constructed by
averaging the outputs of the last K blocks of the teacher,
which are normalized beforehand to prevent a single block
from dominating the sum. Due to the self-attention layers,
these targets are contextualized, i.e. they incorporate global
information from the whole input sequence. This is an im-
portant difference to other masked-prediction methods such
as BERT [7] and MAE [11], where the targets only com-
prise local information, e.g. a word or an image patch.

The student is given a masked version of the same in-
put, where some of the embeddings in the input sequence
are substituted by a special learned mask embedding. The
student’s task is to predict the targets corresponding to the
masked parts of the input. The model is trained by optimiz-
ing a Smooth L1 loss on the regressed targets.

2.2. Data2vec for Point Clouds

To apply data2vec to point clouds, we utilize the same
underlying model as Point-BERT [28] and Point-MAE
[18]. This model is well suited for data2vec pre-training:
it extracts a sequence of patch embeddings from the input
point cloud and feeds it to a standard Transformer encoder.
For downstream tasks, we append a task-specific head to
the Transformer encoder (Sec.3). Next, we describe the
point cloud embedding and the Transformer in detail and
conclude with a summary of data2vec for point clouds.

Point Cloud Embedding. First, we sample n center points
from the input point cloud using farthest point sampling
(FPS) [20]. Grouping the center points’ k-nearest neigh-
bors (k-NN) in the point cloud yields n contiguous point
patches, i.e. sub-clouds of k elements. Next, we normal-
ize the point patches by subtracting the corresponding cen-
ter point from the patch’s points. This untangles the po-
sitional and the structural information. To account for the
permutation-invariant property of point clouds, we employ
a mini-PointNet [19], that maps each normalized point
patch to a patch embedding. The mini-PointNet involves
the following steps: First, we map each point of a patch to
a feature vector using a shared MLP. Then, we concatenate
max-pooled features to each feature vector. The resulting
feature vectors are passed through a second shared MLP and
a final max-pooling layer to obtain the patch embedding.

Transformer Encoder. The central component of the

model is a standard Transformer encoder. The patch em-
beddings form the input sequence to the Transformer en-
coder. Since the point patches are normalized, the patch em-
beddings carry no positional information; therefore, a two-
layer MLP maps each center point to a position embedding,
which is then added to the corresponding patch embedding.
Due to the special importance of positional information in
point clouds, the position embeddings are added again be-
fore each subsequent Transformer block to ensure that the
positional information is incorporated at every step of the
encoding process.

Data2vec—pc. To establish a baseline, we apply the un-
modified data2vec approach to the previously described un-
derlying model of Point-BERT and Point-MAE. Going for-
ward, we will refer to this approach as data2vec—pc.

2.3. Point2vec

In Fig. 1, we present the complete pipeline of our
point2vec model. Directly applying data2vec to point cloud
data without modifications is not optimal, as the position
embeddings are also added to the mask embeddings, reveal-
ing the overall shape of the point cloud to the student. As
positions are the only features for point clouds, this makes
the masking far less effective, as noted by Pang et al. [18]
in the context of masked autoencoders.

To solve this issue, we adopt an approach inspired
by MAE [11], where we only feed the non-masked em-
beddings to the studentd. A separate decoderd, imple-
mented as a shallow Transformer encoder, takes the out-
put of the student and the previously held-back masked
embeddings () as input and predicts the training targets.
In contrast to data2vec—pc, this approach does not suffer
from leaking positional information from the masked-out
point patches to the student. Moreover, utilizing an MAE-
inspired setup provides additional benefits: First, the stu-
dent is more computationally efficient, as it only needs to
process the non-masked embeddings. Second, the model’s
inputs during fine-tuning are more similar to those during
pre-training because the inputs during pre-training are no
longer dominated by masked embeddings which are absent
during fine-tuning. This likely makes the learned represen-
tations more transferable to downstream tasks.

3. Experiments

In this section, we describe the self-supervised pre-
training of point2vec on ShapeNet [4] (Sec.3.1). Next, we
compare point2vec with top-performing self-supervised ap-
proaches and our baseline method data2vec—pc for shape
classification on two well-established datasets (Sec. 3.2). In
the supp. mat., we further provide results on few-shot classi-
fication and part segmentation. Finally, we put the spotlight
on the architectural changes from our data2vec adaptation

for point clouds to our proposed model point2vec which ad-
dress the unique challenges of 3D point clouds (Sec. 3.3).

3.1. Self-Supervised Pre-training

Following the pre-training protocol propagated by Point-
BERT [28], Point-MAE [18] and Point-M2AE [30], we
pre-train point2vec on the training split of ShapeNet [4]
consisting of 41 952 synthetic 3D meshes of 55 categories,
e.g. ‘chair’, ‘guitar’, ‘airplane’. We set the number of
Transformer blocks to 12 with an internal dimension of
384. To pre-train our point-based approach, we uniformly
sample 8192 points from the surfaces of the objects and
then resample 1024 points using farthest point sampling
[20]. During the point cloud embedding step, we sample
n=64 center points and k=32 nearest neighbors. We train
point2vec with a batch size of 512 for 800 epochs using
the AdamW [17] optimizer and a cosine learning rate de-
cay [16] with a maximum learning rate of 1073 after 80
epochs of linear warm-up. For data2vec—pc, we increase
the batch size and learning rate to 2048 and 2x1073, re-
spectively, as this empirically led to better results. Follow-
ing data2vec [1], we set 5=2 for the Smooth L1 loss and
average the last K'=6 blocks of the teacher. We use minimal
augmentations during pre-training: we randomly scale the
input between [0.8, 1.2] and rotate around the gravity axis.

3.2. Main Results on Downstream Tasks

In order to evaluate the effectiveness of point2vec’s self-
supervised learning capabilities, we test point2vec against
top-performing self-supervised Transformer-based methods
on well-established benchmarks. To that end, we discard
the teacher network as well as the decoder and append a
task-specific head to the student network. We then fine-tune
the full network end-to-end for the specific task.

Synthetic Shape Classification. After pre-training on
ShapeNet, we finetune our model for shape classification on
ModelNet40 [25] consisting of 12311 synthetic 3D mod-
els of 40 semantic categories. We obtain the semantic
class label by passing the concatenated mean- and max-
pooled output of the Transformer encoder into a 3-layer
MLP and finetune the whole network end-to-end. During
the point cloud embedding step, we sample n=64 center
points and k=32 nearest neighbors. In Tab. I, we report
a new state-of-the-art for shape classification on Model-
Net40 [25] among self-supervised methods by a large mar-
gin of +1.3% without voting [18,28,30]. Interestingly,
pre-training with data2vec—pc results only in marginal im-
provements (+0.3% without voting) over the same model
trained from scratch on ModelNet40. Unlike data2vec—
pc, we observe that point2vec unleashes the full potential
of data2vec-like pre-training on ModelNet40 by achieving
substantial performance gains of +1.7% over the baseline
trained from scratch.

Table 1. Shape Classification. We report the overall accuracy on
ModelNet40 [25] and ScanObjectNN [23].

Overall Accuracy

ModelNet40 ScanObjNN
+Voting —Voting PB-T50-RS
Point-BERT [28] 93.2 92.7 83.1
MaskPoint [15] 93.8 - 84.6
Point-MAE [18] 93.8 93.2 85.2
Point-M2AE [30] 94.0 934 86.4
from scratch 93.3) 93.0) 84.3)
data2vec—pc 93.6 ; 93.3 ; 85.5 ;
point2vec (Ours) 94.8 94.7 87.5

Table 2. Ablation. We find that a deferred shallow decoder (D)
(Fig. 1 O) predicting the teacher’s representations for masked
patches shows consistent improvements but we identify that con-
cealing positional information (no () from the student is key.

Overall Accuracy

ModelNet40 ScanObjNN

no () D +Voting —Voting PB-T50-RS
data2vec-pc X X 93.6 93.3 85.5
X v 940 93.6 86.8
point2vec v 7/ 948 94.7 87.5

Real-World Shape Classification. Next, we fine-tune
point2vec on ScanObjectNN [23] containing 2902 real-
world object scans of 15 semantic classes. In contrast to
shape classification on ModelNet40, we use 2048 points
and sample n=128 center points for the point cloud embed-
ding step. Although pre-trained on synthetic data, Tab. |
shows that point2vec generalizes well to cluttered real-
world data and achieves state-of-the-art performance among
self-supervised methods by a significant margin of +1.1%
on PB-T50-RS, the most difficult variant of the dataset.
Furthermore, we observe that pre-training point2vec on
ShapeNet plays a crucial role to its strong performance.
Compared to the baseline trained from scratch on ScanOb-
jectNN, pre-training with point2vec achieves an impressive
performance gain of +3.2%.

3.3. Leakage of Positional Information

The main limitation of data2vec—pc is that it directly
feeds masked embeddings, along with their positional in-
formation, to the student network, which undermines the ef-
fectiveness of masking. To visualize this problem, we show
a representative example in Fig. 2(a). Disclosing the posi-
tions of masked patches inadvertently weakens the learning
objective because it provides the student with a coarse view
of the entire object. To mitigate this issue, point2vec ex-
cludes masked embeddings from the student and only sub-

s ti‘.' Ye ;s.
< & £
!‘. 4 2 o o ..t. }i

data2vec—pc
gt
‘¥
Ll .. »
k2%
L% H
et

| . X t‘ . '}.‘
1 Y %1 L]
@ e l\‘:’

Figure 3. Visualization of Learned Representations. We use
PCA to project the representations into RGB space. data2vec—
pc pre-training shows a fairly strong positional bias, whereas
point2vec exhibits a stronger semantic grouping without being
trained on downstream dense prediction tasks.

point2vec

sequently feeds them to the decoder. As a result, several
sections of the chair in Fig. 2(b) are effectively concealed
from the student network, leading to a more resilient learn-
ing framework. In Tab. 2, we report that point2vec outper-
forms our baseline data2vec—pc by a significant margin of
up to +2.0%. In particular, we observe that the decoder
itself provides consistent improvements, but the key con-
tribution of point2vec is to conceal positional information
from the student. Complementary to our findings, He et
al. [11] show that moving masked embeddings to a de-
ferred shallow decoder reduces memory requirements and
training time significantly. Our findings align with those of
Pang et al. [18], who found similar benefits for masked au-
toencoders on point clouds. While we seek a challenging
pretext task to learn rich representations, ambiguity should
not be the primary source of difficulty.

Visualization of representations learned by point2vec.
In Fig. 3, we show qualitative examples of representations
of ModelNet40 instances after pre-training on ShapeNet.
Data2vec—pc pre-training shows a strong positional bias,
whereas point2vec exhibits a stronger semantic group-
ing without being trained on downstream dense prediction
tasks. Unlike data2vec—pc, point2vec conceals positional
information from the student, forcing it to learn more about
the semantics of the data.

4. Conclusion

In this work, we have extended data2vec to the point
cloud domain. Through an in-depth analysis, we have dis-
covered that the disclosure of positional information to the
student network hampers data2vec’s ability to learn strong
representations on point clouds. To overcome this limita-
tion, we have introduced point2vec, a self-supervised repre-
sentation learning approach which unleashes the full poten-
tial of data2vec-like pre-training on point clouds. Point2vec
achieves remarkable results on various downstream tasks,
surpassing other self-supervised learning approaches in
few-shot learning as well as shape classification on well-
established benchmarks. Future work might include extend-
ing point2vec for scene-level representation learning.

References

(1]

(2]

(3]

[4

—

(5]

[6

—_

(7]

(8]

(9]

(10]

(11]

[12]

(13]

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Ji-
atao Gu, and Michael Auli. Data2vec: A general framework
for self-supervised learning in speech, vision and language.
In International Conference on Machine Learning, 2022. 1,
2,3,7,8

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and
Michael Auli. wav2vec 2.0: A framework for self-supervised
learning of speech representations. In Neural Information
Processing Systems, 2020. 1

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In In-
ternational Conference on Computer Vision, 2021. 1,2
Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and
Fisher Yu. Shapenet: An information-rich 3d model reposi-
tory. arXiv preprint arXiv:1512.03012, 2015. 3

Chun-Fu (Richard) Chen, Quanfu Fan, and Rameswar
Panda. CrossViT: Cross-Attention Multi-Scale Vision Trans-
former for Image Classification. In International Conference
on Computer Vision, 2021. 7

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A Simple Framework for Contrastive Learn-
ing of Visual Representations. In International Conference
on Machine Learning, 2020. 1

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding, 2018. 1, 2

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International Con-
ference on Learning Representations, 2020. 7

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichtenhofer.
Multiscale Vision Transformers. In International Conference
on Computer Vision, 2021. 7

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. In Neural Information Process-
ing Systems, 2020. 1, 2

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollar, and Ross Girshick. Masked autoencoders are scalable
vision learners. In IEEE Conference on Computer Vision and
Pattern Recognition, 2022. 1,2, 3,4

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. In IEEE Conference on Computer Vision
and Pattern Recognition, 2020. 2

Wei-Ning Hsu, Yao-Hung Hubert Tsai, Benjamin Bolte,
Ruslan Salakhutdinov, and Abdelrahman Mohamed. Hubert:
How Much Can a Bad Teacher Benefit ASR Pre-Training? In

(14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

IEEE Conference on Acoustics, Speech and Signal Process-
ing, 2021. 1

Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Man-
galam, Bo Xiong, Jitendra Malik, and Christoph Feichten-
hofer. MViTv2: Improved multiscale vision transformers for
classification and detection. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2022. 7

Haotian Liu, Mu Cai, and Yong Jae Lee. Masked Discrim-
ination for Self-Supervised Learning on Point Clouds. In
European Conference on Computer Vision, 2022. 1,4,7, 8
Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. In International Conference on
Learning Representations, 2017. 3

Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2019. 3

Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu,
Yonghong Tian, and Li Yuan. Masked autoencoders for point
cloud self-supervised learning. In European Conference on
Computer Vision, 2022. 1,2,3,4,7,8,9

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep Learning on Point Sets for 3D Classification
and Segmentation. In /EEE Conference on Computer Vision
and Pattern Recognition, 2017. 2

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. PointNet++: Deep Hierarchical Feature Learning
on Point Sets in a Metric Space. In Advances in Neural In-
formation Processing Systems, 2017. 2, 3,7

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In International Conference on Medical Image Computing
and Computer-Assisted Intervention, 2015. 7

Charu Sharma and Manohar Kaul. Self-Supervised Few-
Shot Learning on Point Clouds. In Neural Information Pro-
cessing Systems, 2020. 7

Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,
Duc Thanh Nguyen, and Sai-Kit Yeung. Revisiting Point
Cloud Classification: A New Benchmark Dataset and Clas-
sification Model on Real-World Data. In International Con-
ference on Computer Vision, 2019. 4,9, 11

Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, and
Matthew J. Kusner. Unsupervised Point Cloud Pre-Training
via Occlusion Completion. In International Conference on
Computer Vision, 2021. 1,7

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
ShapeNets: A Deep Representation for Volumetric Shapes.
In International Conference on Computer Vision, 2015. 3, 4,
7,9, 11

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell,
Russ R Salakhutdinov, and Quoc V Le. XLNet: Generalized
Autoregressive Pretraining for Language Understanding. In
Neural Information Processing Systems, 2019. 1

Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A Scalable Active Framework for
Region Annotation in 3D Shape Collections. SIGGRAPH
Asia, 2016. 7,8, 11

(28]

(29]

(30]

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie
Zhou, and Jiwen Lu. Point-bert: Pre-training 3d point cloud
transformers with masked point modeling. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2022. 1,
2,3,4,7,8

Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao,
Lu Yuan, Lei Zhang, and Jianfeng Gao. Multi-Scale Vi-
sion Longformer: A New Vision Transformer for High-
Resolution Image Encoding. In International Conference on
Computer Vision, 2021. 7

Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang, Bin
Zhao, Dong Wang, Yu Qiao, and Hongsheng Li. Point-
M2AE: Multi-scale masked autoencoders for hierarchical
point cloud pre-training. In Advances in Neural Information
Processing Systems, 2022. 1,3,4,7,8

Point2Vec for Self-Supervised Representation Learning on Point Clouds
Supplementary Material

Abstract

This supplementary material contains further results and
ablation studies on the efficiency of pre-training data and
the selection of hyperparameters during pre-training and
fine-tuning on downstream tasks. Our code and model
will be made publicly available for research purposes. We
present point2vec in a supplementary video.

A. Further Results

Few-Shot Classification. Following the standard evalua-
tion protocol proposed by Sharma et al. [22], we test the
few-shot capabilities of point2vec in a m-way, n-shot set-
ting. To this end, we randomly sample m classes and select
n instances for training at random for each of these classes.
For testing, we randomly pick 20 unseen instances from
each of the m support classes. We provide the standard de-
viation over 10 independent runs. In Tab. 3, we report a new
state-of-the-art by improvements up to +1.3% in the most
difficult 10-way 10-shot setting. Point2vec clearly outper-
forms the data2vec—pc baseline in all settings. We conclude
that point2vec learns rich feature representations which are
also well suited for transfer learning in a low-data regime.

Part Segmentation. We also address the task of part seg-
mentation, which assigns a semantic part label to each point
in a 3D point cloud of a single object. For this purpose, we
employ a simple segmentation head that is similar to the
segmentation head in Point-MAE [18]. First, we average
the outputs of the 4th, 8th, and 12th Transformer blocks
to incorporate features from multiple levels of abstraction.
We then concatenate the mean- and max-pooling of the n
averaged token outputs, along with the one-hot encoded
class label of the object, to obtain a global feature vector.
At the same time, we up-sample the n averaged outputs
from the corresponding center points to all points using a
PointNet++ [20] feature propagation layer, which uses in-
verse distance weighting and a shared MLP to produce a
local feature vector for each point. Finally, we concate-
nate the global feature vector with each local feature vec-
tor and a shared MLP predicts a part label for each point.
In Tab.4, we report competitive results on ShapeNetPart
[27] which consists of 16881 3D models of 16 semantic
categories. Apart from Point-M2AE [30], point2vec out-
performs all other self-supervised methods. We hypothesize
that Point-M2AE’s multi-scale U-Net like architecture [21]

Table 3. Few-Shot Classification on ModelNet40 [25]. We re-
port mean and standard deviation over 10 runs.

5-way 10-way
Method 10-shot 20-shot 10-shot 20-shot
OcCo [24] 91.9+3.6 93.9+3.1 86.4+54 91.3+4.6

Transf.-OcCo [28] 94.0+3.6 95.9+2.3
Point-BERT [28] 94.6+3.1 96.3+2.7
MaskPoint [15] 95.0+3.7 97.2+1.7
Point-MAE [18] 96.3+2.5 97.8+1.8
Point-M2AE [30] 96.8+1.8 98.3+1.4

93.8+3.2 97.1£1.9
96.2+£2.6 97.8+2.2
97.0+2.8 98.7+1.2

89.4+5.1 92.4+4.6
91.0£5.4 92.7+5.1
91.4+4.0 93.4+3.5
92.6x4.1 95.0£3.0
92.3+4.5 95.0+3.0

90.1+4.6 93.6+3.9
92.6£4.9 95.0+3.2
93.9+4.1 95.8+3.1

from scratch
data2vec—pc
point2vec (Ours)

enables to learn more expressive spatially localized fea-
tures which results in slightly better scores (+0.2 mIoUy).
Since point2vec relies on a standard single-scale Trans-
former backbone, we see multi-scale Transformers for 3D
point clouds as an interesting orthogonal improvement, sim-
ilar to the advances in 2D vision [5, 9, 14, 29] extending vi-
sion Transformers [8] with multi-scale capabilities.

B. Further Ablation Studies

Pretext Task. In the main paper, we have only explored
self-supervised pre-training on the ShapeNet dataset. How-
ever, ShapeNet also contains class labels which could in-
stead be used for a fully supervised classification-based
pre-training. As can be seen in Tab. 5, this yields a sig-
nificantly worse performance than using point2vec or even
than directly training from scratch. We can also pre-train
using point2vec directly on ModelNet40, which constitutes
roughly a quarter of ShapeNet’s size. Still, we see improved
downstream performances, indicating that the point2vec
pretext task is meaningful for pre-training.

Warm-Up EMA Rate. During pre-training, we linearly
warm-up the EMA rate 7 over the first 7,, epochs from its
initial value 7 to its final value 7. [!]. This approach is
based on the idea that we should update the teacher net-
work more frequently at the start of training since the fea-
ture representations are not yet well-established. In Tab. 6,
we show overall accuracy scores on ModelNet40 and the
PB-T50-RS variant of ScanObjectNN using various val-
ues for 7,,. Our findings suggest that 7,, is a crucial hyperpa-
rameter for achieving effective pre-training with point2vec.
In Tab. 8, we provide the EMA rates employed by our base-
line data2vec—pc and point2vec, respectively.

https://drive.google.com/file/d/1i1jhF8XrqLtuUQMwfHuS9Z2xH3US7nLG/view

Table 4. Part Segmentation Results on ShapeNetPart [27]. We report the mean IoU across all part categories mloU¢ and the mean IoU
across all instance mloUy, as well as the IoU for each categories.

Methods mloUcs mloU; aero bag cap car chair earph guitar knife lamp laptop motor mug pistol rocket skateb table
Transf.-OcCo [28] 834 85.1 833 852 883 799 90.7 74.1 919 87.6 847 954 755 944 84.1 63.1 757 808
Point-BERT [28] 84.1 85.6 843 848 88.0 798 91.0 81.7 91.6 879 852 956 756 947 843 634 763 815
MaskPoint [15] 844 86.0 842 856 881 80.3 912 795 919 878 862 953 769 950 853 644 769 818
Point-MAE [18] 84.1 86.1 843 850 883 80.5 913 785 921 874 86.1 96.1 752 94.6 847 635 77.1 824
Point-M2AE [30] 849 86.5 - - - - - - - - - - - - - - -
from scratch 84.1 8577 842 848 879 802 912 793 916 87.8 854 96.1 758 947 850 647 754 8l1.1
data2vec—pc 84.1 859 847 858 874 807 914 793 917 879 852 958 762 949 836 61.6 785 80.7
point2vec (Ours) 84.6 863 852 857 885 803 915 773 918 885 857 96.1 773 955 849 662 77.0 82.0

airplane
bathtub -
bed
bench
bookshelf
bottle |
bowl {

car

chair
cone
cup

1.0

0.8

curtain 4
desk
door -

dresser -

flower_pot -
glass_ box -
guitar 4

0.6

True label
g
=3
3
°

mantel q
monitor 4
night_stand -
person -
piano 4

plant 4

radio -
range_hood |
sink -

r0.4

sofa -
stairs
stool 4
table 4
tent 4

ro0.2

toilet 4
tv_stand -
vase
wardrobe 1
xbox 1

-0.0

bed
bench 4
bookshelf 4
bowl 4
car 4
chair
cone {
cup
desk -
door -
dresser -
flower_pot
sink
sofa -
stairs -
vase
wardrobe -
xbox

guitar 4

airplane
bathtub
bottle
curtain 4
glass box -
monitor {
night_stand
person
piano
plant
radio
range_hood
stool
table -

Predicted label

(a) Row-normalized confusion matrix

True label

airplane

bathtub 4
bed q
bench 1
bookshelf 4
bottle
bowl 4
carq

chair 4
cone

cup

0.8

curtain 4
desk 4
door -

dresser -

flower_pot -
glass box -
guitar 4

0.6

mantel |
monitor 4
night_stand
person
piano -

plant {

radio {
range_hood
sink |

0.4

sofa q
stairs
stool 4
table 4
tent 4
toilet §
tv_stand 4
vase 1
wardrobe -
xbox - .

0.2

0.0

airplane
bathtub -
bed 4
bench -
bookshelf 4
bottle 4
bowl 4
car o
chair 4
cone
cup
curtain 4
desk -
door 4
dresser 4
flower_pot 4
guitar -
keyboard |
monitor 4
night_stand 4
person -
piano -
plant -
radio 4
range_hood 4
sink
sofa -
stairs -
stool 4
table 4
tent 4
toilet
tv_stand 4
vase -
wardrobe -
xbox

glass_box -

Predicted label

(b) Column-normalized confusion matrix

Figure 4. Confusion matrix of point2vec on the ModelNet40 test split. We present the confusion matrix, both row-normalized (a)
and column-normalized (b). The diagonals of these show the recall and precision respectively. As expected, the matrix reveals that the
majority of misclassifications occur between a small number of closely related classes. The most frequent cases of misclassifications are
night_stands that are classified as dressers, flower_pots that are classified as plants and tables that are classified as desks.

Target Layer Aggregation. During training of data2vec—
pc, as well as point2vec, we need to specify which layers of
the teacher should be defined as the target. The target is
constructed by averaging the last K layers, where Baevski
et al. [1] recommend to use half the number of total layers
in absence of additional experiments. We ablate this hyper-
parameter and report results in Tab. 7. Although all tested
values lead to usable results, indeed K = 6 overall leads to
the best performance.

Pre-Training Data Efficiency. We evaluate the efficiency
of self-supervised pre-training with point2vec. To this
end, we partition the ShapeNet training dataset into sub-
sets containing 25%, 50%, 75% and 100% of the data.
We then fine-tuned our model for shape classification on
ModelNet40 and ScanObjectNN, respectively. As shown
inFig. 5, point2vec achieves consistent improvements on
both datasets. Notably, pre-training point2vec with only
25% of the training data yields superior results compared
to Point-MAE pre-trained with 100% of the training data.

Table 5. Pretext Tasks. After pre-training with a classification
objective on ShapeNet, fine-tuning on ModelNet40 leads to no
performance gains over directly training from scratch and sig-
nificantly worse performance on the most difficult test split of
ScanObjectNN. However, point2vec already brings performance
gains when pre-trained with the much smaller ModelNet40 dataset
and significant improvements when pre-trained with the large
ShapeNet dataset.

Overall Accuracy
ModelNet40 ScanObjNN

Pretext Task +Voting —Voting PB-T50-RS
none / from scratch 93.3 93.0 84.3
classification (ShapeNet) 93.2 93.0 82.9
point2vec (ModelNet40) 93.9 93.6 84.4

point2vec (ShapeNet) 94.8 94.7 87.5

Table 6. Warm-Up EMA Rate. We linearly warm-up the EMA
rate during the first 7,, epochs.

Overall Accuracy

ModelNet40 ScanObjNN

T, +Voting —Voting PB-T50-RS
80 94.5 94.1 86.7
160 94.6 94.2 87.4
200 94.8 94.7 87.5
300 94.1 94.0 87.3
400 94.0 94.0 87.3

Table 7. Target Layer Aggregation. We construct training tar-
gets by averaging the outputs of the last K Transformer blocks of
the teacher. We observe that K = 6 is optimal for ModelNet40 and
close to optimal for the PB-T50-RS variant of ScanObjectNN.

Overall Accuracy

ModelNet40 ScanObjNN

K +Voting —Voting PB-T50-RS
1 94.4 94.1 87.0
3 94.7 94.3 87.1
6 94.8 94.7 87.5
9 94.3 94.0 87.6
12 94.5 94.3 87.3

Class Confusions on ModelNet40. Given the very high
overall accuracies on the ModelNet40 dataset, we further
analyze the remaining errors. Fig.4 shows the confusion
matrix on the ModelNet40 test split, clearly showing that
most remaining mistakes are made for a few classes with
very similar appearances, which might also be difficult for

Point-MAE [18]
95 — Overall Accuracy

— point2vec (Ours)

. 87,
94 — |
| 85 —
93 - 83 —
| | | | | | | | | |
0 25 50 75 100 0 25 50 75 100

% of pre-training data

(a) ModelNet40 [25]

% of pre-training data

(b) ScanObjectNN [23]

Figure 5. Pre-training Data Efficiency. Irrespective of the quan-
tity of pre-training data used from ShapeNet, point2vec consis-
tently achieves better results than Point-MAE [18] on Model-
Net40 (with voting) and the most difficult test split of ScanObjNN.

humans to distinguish.

C. Architecture Details

In Tab. 8, we provide detailed hyperparameters for pre-
training data2vec—pc and point2vec on ShapeNet. We,
furthermore, report the hyperparameters for fine-tuning
point2vec for the shape classification (Tab. 9) and part seg-
mentation task (Tab.10). In Listing 1, we provide the
PyTorch-inspired pseudocode for point2vec pre-training.

D. Qualitative Results for Part Segmentation

In Fig. 6, we show qualitative results for part segmenta-
tion on the ShapeNetPart dataset. Point2vec achieves re-
markable results, as the boundaries between parts are accu-
rately localized with minimal semantic errors. In the major-
ity of instances, there is no perceivable difference between
the results produced by point2vec and the ground truth.

ground truth

point2vec

Figure 6. Qualitative Results on ShapeNetPart. point2vec produces well localized boundaries between parts with minimal semantic
errors. In most cases, the differences between the results of point2vec and the ground truth are imperceptible to the human eye. However,

the last example shows a failure case where the jet engine is not properly segmented.

N: batch size (512)
S: number of groups/embeddings (64)
E: embedding feature dimension (384)

for point_cloud in data_loader:
point cloud embedding
center_points = self.FPS(point_cloud) # (N, S, 3)
point_patches = self.KNN(point_cloud, center_points) # (N, S, 32, 3)
patch_embeddings = self.mini_pointnet (point_patches) # (N, S, E) (Fig. 1,)
pos_embeddings = self.pos_encoder (center_points) # (N, S, E)

masking
mask_embeddings = self.mask_embedding.expand (N, S, E) # (N, S, E)
mask = generate_mask (center_points) # (N, S) boolean

targets
with torch.no_grad():

teacher_states = self.teacher (patch_embeddings, pos_embeddings) # (12, N, S, E) (Fig.

target_layers = [F.layer_norm(x, (E,)) for x in teacher_states[6:]] # [(N, S, E)]
targets = torch.stack (target_layers) .mean (0) # (N, S, E)
targets = F.layer_norm(targets, (E,)) # (N, S, E)

predictions

last_student_state = self.student(# (N, S, E) (Fig. 1, 0O)
patch_embeddings|["mask] .reshape (N, -1, E),
pos_embeddings ["mask] .reshape (N, -1, E)

) [-1]

predictions = self.decoder(# (N, S, E) (Fig. 1, 0O
mask_embeddings.index_put (["'mask], last_student_state.reshape (-1, E)),
pos_embeddings

) [-1]

optimization

loss = F.smooth_11_loss (predictions[mask], targets[mask])
loss.backward ()

optimizer.step ()

update teacher weights
ema_update (student, teacher)

Listing 1. PyTorch-inspired pseudocode for point2vec pre-training.

1,

0)

Table 8. Hyperparameters for data2vec—pc and point2vec.
Data2vec—pc denotes our adaptation of data2vec to the point cloud
modality. We report the best performing hyperparameters for both
data2vec—pc and point2vec. LN: layer normalization. AVG: aver-

age pooling over layers.

data2vec—pc point2vec
Steps 800 epochs 800 epochs
Optimizer AdamW AdamW
Learning rate 2x1073 1x1073
Weight decay 0.05 0.05
LR Schedule cosine cosine
LR Warm-Up 80 epochs 80 epochs
Batch size 2048 512
Encoder layers 12 12
Encoder dimension 384 384
Decoder layers - 4
Masking strategy random random
Masking ratio 65% 65%
To (EMA start) 0.9998 0.9998
T (EMA end) 0.99999 0.99999
7, (EMA warm-up) 200 epochs 200 epochs
K (layers to average) 6 6
Target normalization =~ LN—-AVG—LN LN—-AVG—LN

Table 9. Hyperparameters for Classification. We use the same
hyperparameters when fine-tuning point2vec and data2vec—pc on

ModelNet40 [

] and ScanObjectNN [

]. When training from

scratch, we increase the learning rate to 1 x 1072 and do not freeze

the Transformer encoder.

Epochs

Batch size

Optimizer

Learning rate

Weight decay
Learning rate schedule
Learning rate warm-up

points

n (center points)

k (k-NN grouping)
mini-PointNet 1st MLP dim
mini-PointNet 2nd MLP dim

Encoder layers
Encoder dimension
Encoder heads
Encoder drop path
Encoder frozen

Feature aggregation
Classification head dim
Classification head dropout
Label smoothing

150

32
AdamW
3x1074
0.05
cosine

10 epochs

1024 (2048 for ScanObjNN)
64 (128 for ScanObjNN)

32

128, 256

512, 384

12

384

6

0%, . ..,20%
100 epochs

mean- & max-pooling
256, 256, #classes
50%

0.2

Table 10. Hyperparameters for Part Segmentation. We use the
same hyperparameters when fine-tuning point2vec and data2vec—

pc on ShapeNetPart [27].

Epochs

Batch size

Optimizer

Learning rate

Weight decay
Learning rate schedule
Learning rate warm-up

points

n (center points)

k (k-NN grouping)
mini-PointNet 1st MLP dim
mini-PointNet 2nd MLP dim

Encoder layers
Encoder dimension
Encoder heads
Encoder drop path

Feature propagation
Segmentation head dim
Segmentation head dropout

300

16
AdamW
2x 107
0.05
cosine

10 epochs

2048
128

32

128, 256
512, 384

12
384

6
0%,...,20%

described in main paper
512, 256, #classes
50%

	. Introduction
	. Method
	. Data2vec
	. Data2vec for Point Clouds
	. point2vec

	. Experiments
	. Self-Supervised Pre-training
	. Main Results on Downstream Tasks
	. Leakage of Positional Information

	. Conclusion
	. Further Results
	. Further Ablation Studies
	. Architecture Details
	. Qualitative Results for Part Segmentation

