
Motion Vector Extrapolation for Video Object Detection

Julian True
Ryerson University, Toronto ON

jtrue@ryerson.ca

Naimul Khan
Ryerson University, Toronto ON

n77khan@ryerson.ca

Abstract

Despite the continued successes of computationally ef-
ficient deep neural network architectures for video ob-
ject detection, performance continually arrives at the great
trilemma of speed versus accuracy versus computational
resources (pick two). Current attempts to exploit tempo-
ral information in video data to overcome this trilemma
are bottlenecked by the state-of-the-art in object detection
models. We present, a technique which performs video ob-
ject detection through the use of off-the-shelf object detec-
tors alongside existing optical flow based motion estima-
tion techniques in parallel. Through a set of experiments
on the benchmark MOT20 dataset, we demonstrate that our
approach significantly reduces the baseline latency of any
given object detector without sacrificing any accuracy. Fur-
ther latency reduction, up to 25× lower than the original la-
tency, can be achieved with minimal accuracy loss. MOVEX
enables low latency video object detection on common CPU
based systems, thus allowing for high performance video
object detection beyond the domain of GPU computing. The
code is available at https://github.com/juliantrue/movex.

1. Introduction
Object detection has seen significant progress over the

last several years [1] [8]. Each new iteration or approach
promises higher accuracy at the cost of higher inference la-
tency, or lower latency at the cost of lower accuracy when
compared with high latency counterparts. Computing com-
panies are in an arms race to provide hardware that offers
the capability to use high accuracy models at low latencies,
but this introduces, at best, a dependency on off-the-shelf
GPUs and at worst a dependency on expensive niche co-
processors. Despite the progress made, the trilemma per-
sists; there is not a silver bullet to address the three con-
straints of accuracy, latency, and cost simultaneously.

Optical flow has also had recent performance gains
through the use of CNN architectures [6] [4]. Through
these methods and GPU hardware acceleration, dense op-
tical flow techniques have become faster and more accurate

over the last several years.
It is well established that image content varies slowly in

video data as following the same object through time can
be viewed as a different task all together compared to find-
ing unique objects every frame. Though there have been
attempts to exploit this temporal information redundancy
through feature propagation based on optical flow methods
in the past, performance remains bottle-necked by the la-
tency associated with a CNN inference [11].

This work proposes MOVEX, an online, real-time,
method of object detection in video. Through the com-
bination of an arbitrary off-the-shelf object detection deep
neural network (DNN) with a coarse approximation of op-
tical flow and an optimistic sparse detection propagation
parallelism strategy, we demonstrate that fast, accurate, and
computationally inexpensive video object detection can be
achieved. Furthermore, this work demonstrates the capabil-
ity to accelerate object detectors up to 25 times the original
performance with minimal (< 0.01AP) accuracy degrada-
tion. Since MOVEX does not require the use of a GPU, it
enables models typically limited to the realm of GPU com-
puting to be used on commodity CPU hardware with lower
inference latency than found in GPU implementations of the
same model.

2. Related Work
This work builds on the problem formulation provided

by Zhu et al. known as Deep Feature Flow. It frames video
object detection as a two-step algorithm consisting of ex-
pensive feature extraction at sparse key-frames and feature
propagation for non-key frames through the use of a func-
tion they coin the sparse feature propagation [11].

fk =W(fi,Mi→k, Si→k) (1)

Equation 1 provides the ground work for propagating
features forward from frame Ii to frame Ik through the use
of the sparse feature propagation functionW which accepts
as input the feature map from frame i, the 2D optical flow
field Mi→k, and a so-called scale field Si→k. The authors
used a CNN based method known as FlowNet [4] to esti-
mate the flow Mi→k and adding an extra channel to esti-

1

https://github.com/juliantrue/movex


mate the scale field Si→k. Additionally they use a ResNet
50 and 101 network with classification layers removed to
use for the feature extractor backbone [5] and turn it into an
object detector through the use of an R-FCN head network
on top [2] [11].

Through this work, Zhu et al. demonstrated that this ap-
proach was effective at reducing average latencies associ-
ated with video object detection. This technique however,
did not fully redress the high latency operation of perform-
ing an inference with a CNN. Although inferencing less on
a sequence of images does lower the average, it does not
eliminate the necessity for a blocking high latency inference
every k frames.

3. Motion Vector Extrapolation (MOVEX)
3.1. Coarse Optimal Flow Approximation

Modern video codecs such as VP9 and H.265, as well
as older codecs such as H.264 encode video with intra-
frame and inter-frame coding techniques. In order to reduce
the entropy between successive frames, these video codecs
implement a macroblock (MB) structure that allows for
pixel-patches to be translated within the frame before sub-
sequently taking the difference between successive frames.
These intra-frame translations that minimize the mean ab-
solute difference (MAD) between image patches, and thus
successive frames, are referred to as motion vectors (MVs)
[9].

It is notable that these vectors do not specifically encode
inter-frame object translations, despite their name, they en-
code the vector that minimizes the differences between suc-
cessive macroblocks. However, it is often the case that they
provide a reasonable approximation of such inter-frame ob-
ject motion [10]. It is important to note that not all H.264
encodings are created equally. Lower quality settings for
such video codecs often yield poor motion vector represen-
tations while achieving their goal of minimizing MAD in
less search time or fewer vectors, if any. As such, the scope
of motion vector encoding’s applicability to optical flow ap-
proximation remains limited to only higher quality encod-
ings.

Despite downstream applications getting these arti-
facts/features for free since the are pre-computed at encod-
ing time, very few applications make use of them. When
taking into account the quality considerations, H.264 mo-
tion vectors allow for extremely fast optical flow approxi-
mations.

3.2. Optimistic Sparse Detection Propagation

The objective of optimistic sparse detection propagation
is to accept a prior set of detections and perturb them ac-
cording to the sparse detection propagation function (SDPF)
W which, similar to Zhu et Al. takes a 2D flow field as in-

put and rather than passing a set of features, our function
accepts a prior set of object detection bounding-boxes Di.
This difference allows our approach to be entirely model
agnostic, and thus is not tied to one particular object detec-
tor.

Dk =W(Di,Mi→k) (2)

The SDPF iterates over each detection dj in the set Di

and applies an aggregation function φ to the enclosed flow
vectors muv , resulting in a net flow vector to perturb the
detection with. Each 2D flow field is stored in a temporary
buffer B.

dk = φ(dj ,muv) (3)

In practice, the aggregation function is simply the mean
or median in x and y, however more complicate aggregation
functions that weight areas of the detection more than others
can be considered. Figure 1 depicts the role of the aggre-
gation function in propagating detections from the current
frame to a consecutive frame.

The SDPF requires a starting set of detections to propa-
gate forward through the video. This particular set is known
as the prior detection set, which is an estimate provided
from a key-frame inference. However, rather than evoke
a computationally expensive and blocking DNN inference
at a key-frame, this inference is computed in parallel. The
object detector runs in parallel with another worker which
simply iteratively applies an SPDF following equation 2 to
the existing detection set at frame i.

Since there is no waiting for object detection to complete
before proceeding, the process which iteratively applies the
SDPF works several frames ahead of the object detector be-
fore receiving the computed detections. As such there is
a discrepancy of several frames between the current set of
detections and the returned detections from the object de-
tector. However since the flow fields have been retained
every frame in the flow vector buffer B, the detections re-
ceived from the inferencing process are propagated forward
through iteratively applying the SDPF on said buffer of flow
vectors, in order to update the prior. At the end of this up-
date the detections at the current frame incorporate the com-
puted detection information from the DNN worker. Artic-
ulated another way, when new information is returned for
a frame that has already passed, the stored flow fields are
used to re-propagate the new detection set forward to the
current frame. The buffer is emptied in this update to allow
for new flow vectors to be added. This process is outlined
in the pseudocode algorithms 1 and 2 in the appendix.

Since there is no scheduling for key-frame prior updates
based on elapsed time or frame index, existing detections
will continue to be propagated forward in time until the
prior is updated with new information from the object de-
tector. As such, the object detector latency does not directly
contribute to the computation time of predicting detections

2



Figure 1. The only motion vectors considered in the source frame i are those which fall in the area of the bounding box. The median
perturbation of those motion vectors is computed and applied to the source bounding box in order to predict the bounding box in frame
i+ 1.

at a frame i. However as the object detector latency in-
creases, more frames will have passed during the elapsed
computation time and thus will fill the motion vector buffer
B to a greater capacity. As B fills with more frame data, the
cost of a prior update becomes larger due to the number of
frames for which detections need to be propagated forward
to arrive back at the current frame i.

As the object detector latency increases, the interplay be-
tween updating detections based on image content versus
updating based on flow vectors becomes apparent. New de-
tection targets can only be detected with the object detector
and thus higher latencies will ultimately determine perfor-
mance in applications that have targets which enter and exit
the image frame quickly.

4. Experiments

In order to evaluate the capabilities of this approach, two
critical metrics were considered: average-precision (AP)
and detection latency. The dataset used to evaluate these
metrics was the MOT20 dataset [3]. The reason for using
this dataset is because the data in this case is taken directly
from video and maintains the temporal context between im-
ages.

All evaluations were conducted on an Intel i7-8700K
CPU 3.70GHz with Nvidia GTX 1080Ti 12GB. Tests
marked with ”CPU” were evaluated solely on the CPU with-
out exposing GPU capabilities to the test, otherwise the
GPU was used to evaluate.

4.1. H.264 Motion Vectors and FlowNet2.0

Examining the performance results in Table 1, the la-
tency of the original Faster R-CNN model is reduced by a
factor of 10.3× when run with MOVEX using the H.264
MVs. However, when using FlowNet2 as the source for the

motion vectors, performance is greatly impacted, present-
ing a 2.0× increase in latency. The FlowNet2-s model was
used to compute the optical flow which claimed to have a
runtime of approximately 7ms on a GTX 1080Ti [6], how-
ever performance when running it was no where near this as
model forward passes were routinely reaching 100ms. The
AP differences between the three evaluated Faster R-CNN
models demonstrates that the use of MOVEX decreases the
AP of the baseline model by approximately 0.007 AP when
using H.264 MVs but only a decrease of 0.006 AP when
using the FlowNet2.0 model.

4.2. Hi-Resolution Versus Low-Resolution

The effect of increasing input resolution for CNN ob-
ject detectors is known to increase their accuracy. Shown in
Table 1, YOLOv4 trained on the COCO dataset [7] is com-
pared against itself at two different resolutions 416 × 416
versus 960 × 960, resulting in APs of 0.261 and 0.402 re-
spectively. This confirms the relationship between input
resolution and accuracy, but also demonstrates an oppor-
tunity for the MOVEX augmentation. Consider that when
using the higher resolution model with MOVEX, the AP
drops by a mere 0.002 yet the latency falls below that of the
original low resolution model. A latency decrease of 7.18×
compared to the original high resolution model.

4.3. CPU Versus GPU

Continuing in the vein of accelerating typically high la-
tency object detectors, consider CPU versus GPU object
detection latency. It is well known by practitioners that
hardware accelerators such as GPUs or TPUs are needed
to achieve low latency computation with CNNs. This point
is further articulated by the latency data point given by run-
ning YOLOv4 with an input resolution of 416 × 416 on a
CPU. This yields a latency of 190.41ms, which is far too

3



Method Avg Latency (ms) ↓ AP ↑
FRCNN [3] 131.52 63.0
FRCNN [3] w/ MOVEX + FlowNet2 263.25 62.4
FRCNN [3] w/ MOVEX + H.264 MVs 12.79 62.3
YOLOv4 [1] (960x960) 79.46 40.2
YOLOv4 [1] (960x960) w/ MOVEX + H.264 MVs 11.06 39.8
YOLOv4 [1] (416x416) 26.34 26.1
YOLOv4 [1] (416x416) on CPU 190.41 26.1
YOLOv4 [1] (416x416) on CPU w/ MOVEX + H.264 MVs 7.53 25.2

Table 1. Evaluation of MOVEX with H.264 MVs or FlowNet2 optical flow against baseline Faster R-CNN model used for MOT20 public
detections without augmentation [3]. As expected, FlowNet2 flow vectors are more accurate than the approximation provided by the H.264
motion vectors, however this better accuracy comes at a cost of high inference latency. Varying the input resolutions of two YOLOv4
models [1] trained on the COCO dataset [7] demonstrates the accuracy gains possible without sacrificing inference latency.

large for any real-time application. When using MOVEX
in conjunction with this model however, the latency falls
lower than the original GPU computation latency, resulting
in a latency reduction by 25.29× and falling 0.009 AP.

Such latencies for large model such as YOLOv4 on a
CPU have yet to be achieved with existing inference ac-
celeration methodologies. GPU computational resources
are orders of magnitude more expensive than standard CPU
based systems. Employing MOVEX in systems looking to
perform object detection on video data would lead to large
cost savings by switching from GPU to CPU focused com-
puting. Furthermore, emerging applications in edge com-
puting where cost, space, and computing capabilities are
typically limited would greatly benefit from using this tech-
nique since modern GPU centered computing often clashes
directly with these constraints.

5. Conclusion
We presented MOVEX, a technique that can be applied

to an arbitrary off-the-shelf object detector and reduce its
inference latency on video data by large margins while
sacrificing minimal accuracy. We have demonstrated that
MOVEX improves performance for existing object detec-
tion models, for which, online real-time video object de-
tection would not have been possible prior. Additionally,
we have shown that accuracy improvements are possible
without sacrificing latency through increasing the resolution
of models and using these models with MOVEX. Lastly,
MOVEX allows for models typically restricted to the do-
main of GPU or TPU computing, due to latency concerns,
to expand to less expensive CPU devices.

References
[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. Yolov4: Optimal speed and accuracy of
object detection, 2020. 1, 4

[2] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object
detection via region-based fully convolutional networks. In

Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, page 379–387,
Red Hook, NY, USA, 2016. Curran Associates Inc. 2

[3] Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen
Shi, Daniel Cremers, Ian Reid, Stefan Roth, Konrad
Schindler, and Laura Leal-Taixé. Mot20: A benchmark for
multi object tracking in crowded scenes, 2020. 3, 4

[4] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas, V.
Golkov, P. v. d. Smagt, D. Cremers, and T. Brox. Flownet:
Learning optical flow with convolutional networks. In 2015
IEEE International Conference on Computer Vision (ICCV),
pages 2758–2766, 2015. 1

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 770–
778, 2016. 2

[6] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
T. Brox. Flownet 2.0: Evolution of optical flow estimation
with deep networks. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1647–1655,
2017. 1, 3

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuyte-
laars, editors, Computer Vision – ECCV 2014, pages 740–
755, Cham, 2014. Springer International Publishing. 3, 4

[8] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-
wards real-time object detection with region proposal net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(6):1137–1149, 2017. 1

[9] Joint Video Team. Draft itu-t recommendation and final draft
international standard of joint video specificaton. ITU-T Rec.
H.264, 2003. 2

[10] Wonsang You, Houari Sabirin, and Munchurl Kim. Moving
object tracking in h.264/avc bitstream. volume 4577, pages
483–492, 06 2007. 2

[11] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei. Deep fea-
ture flow for video recognition. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
4141–4150, 2017. 1, 2

4



6. Appendix

input: image of resolution w × h
begin

img← preprocess image(img);
detections← object detection(img);
return detections

end
Algorithm 1: Object detection remote procedure call
(RPC) psuedocode.

input: N length sequence of images of resolution
w × h

begin
m← 1;
send img to object detection RPC(imgm);
detectionsm ← wait for detections;
initialize MV buffer B
for i← 2 to N do

add MVi→i+1 to B;
if detections received from RPC then

priorm← RPC detections;
for m to i do

apply MVm from Bm to priorm
usingW

end
m← i;
empty MV buffer B;
detectionsi ← priorm;
send img to object detection RPC(imgi);

else
detectionsi
←W(priorm,MVm→m+1);

end
end

end
Algorithm 2: SDPF worker process psuedocode.

5


