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Abstract

Animals have evolved highly functional visual systems to
understand motion, assisting perception even under com-
plex environments. In this paper, we work towards de-
veloping a computer vision system able to segment ob-
jects by exploiting motion cues, i.e. motion segmentation.
We introduce a simple variant of the Transformer to seg-
ment optical flow frames into primary objects and the back-
ground, and train the architecture in a self-supervised man-
ner, i.e. without using any manual annotations. Despite
using only optical flow as input, our approach achieves
superior or comparable results to previous state-of-the-art
self-supervised methods, while being an order of magnitude
faster. We additionally evaluate on a challenging camou-
flage dataset (MoCA), significantly outperforming the other
self-supervised approaches, and comparing favourably to
the top supervised approach, highlighting the importance
of motion cues, and the potential bias towards visual ap-
pearance in existing video segmentation models.

1. Introduction
In computer vision, perceptual grouping is often closely

related to the problem of segmentation. However, training
such segmentation models through supervised learning re-
quires massive human annotation, and consequently limits
their scalability. Even more importantly, the assumption
that objects can be well-identified by their appearance alone
in static frames is often an oversimplification – objects are
not always visually distinguishable from their background
environment, such as in camouflage detection.

In this paper, we aim to exploit motion cues for object
segmentation in a self-supervised manner. At a high level,
we aim to exploit the common fate principle, with the ba-
sic assumption being that elements tend to be perceived as
a group if they move in the same direction at the same
rate (have similar optical flow). Specifically, we tackle the
problem by training a generative model that decomposes the
optical flow into foreground (object) and background layers,
describing each as a homogeneous field, with discontinu-

ities occurring only between layers. We adopt a variant of
the Transformer [14], with the self-attention being replaced
by slot attention [8], where iterative grouping and binding
have been built into the architecture. With some critical ar-
chitectural changes, we show that pixels undergoing similar
motion are grouped together and assigned to the same layer.

In terms of related work, our work focuses on demon-
strating work on object-centric representations [8] towards
video object segmentation [16], in particular motion seg-
mentation. In our architecture, we also use a variant of
Transformer [14] to create a layered representation [15].

2. Method
Our goal is to take an input optical flow field (computed

using RAFT [12]) and predict a segment containing the
moving object. We train this model in a self-supervised
manner; specifically, we adopt an autoencoder-like frame-
work. Our model outputs two layers: one representing the
background, and the other for one or more moving objects
in the foreground, as well as their opacity layers (weighted
masks). Formally, we have:

tÎitÑt`n, α
i
tÑt`nu

N
i“1 “ ΦpItÑt`nq (1)

where ItÑt`n refers to the t to t ` n input flow (back-
ward flow when n ă 0), Φp¨q is the parametrized model,
ÎitÑt`n is the ith layer reconstruction, αi

tÑt`n is its mask,
and N “ 2 is the number of layers (foreground and back-
ground). These layers can then be composited linearly to
reconstruct the input image ItÑt`n:

ÎtÑt`n “

N
ÿ

i“1

αi
tÑt`nÎ

i
tÑt`n (2)

2.1. Flow Segmentation Architecture
For simplicity, we first consider the case of a single flow

field as input (depicted in the top half of Figure 1). The
entire model consists of:

CNN Encoder. We first pass the precomputed optical
flow field between two frames, ItÑt`n P R3ˆH0ˆW0 , to
a CNN encoder Φenc, which outputs a lower-resolution
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Figure 1. Pipeline. Our model takes optical flow ItÑt`n as input, and outputs a set of reconstruction and opacity layers. Specifically,
it consists of three components: feature encoding, iterative binding, and decoding to layers, which are combined to reconstruct the input
flow. To resolve motion ambiguities (small motion), or noise in optical flow, consistency between two flow fields computed under different
frame gaps is enforced during training. At inference time, only the top half of the figure is used to predict masks from a single-step flow.

feature map FtÑt`n P RDˆHˆW . Note that, we convert
the optical flow field into a three-channel image according
to the traditional method in the optical flow literature.

Iterative Binding. The iterative binding module Φbind
aims to group image regions into single entities based on
their similarities in motion, i.e. pixels moving in similar
rate and direction should be grouped together. Intuitively,
such a binding process requires a data-dependent parameter
updating mechanism, iteratively adapting and enriching the
model, gradually including more pixels undergoing similar
motions.

To accomplish this task, we adopt a simple variant of
slot attention [8], where instead of Gaussian-initialized
slots, we use learnable query vectors. Slot attention has
recently shown remarkable performance for object-centric
representation learning, where the query vectors compete
to explain parts of the inputs via a softmax-based attention
mechanism, and the representations of these slots are itera-
tively updated with a recurrent update function. In our case
of motion segmentation, ideally, the final representation in
each query vector separately encodes the moving object or
the background, which can then be decoded and combined
to reconstruct the input flow fields.

CNN Decoder. The CNN decoder Φdec individually
decodes each of the slots to outputs of original resolu-
tion (tÎitÑt`n, α

i
tÑt`nu P R4ˆH0ˆW0 ), which includes

an (unnormalized) single-channel alpha mask and the
reconstructed flow fields. Specifically, the input to the
decoder is the slot vector broadcasted onto a 2D grid
augmented with a learnable spatial positional encoding.

Reconstruction. Once each slot has been decoded, we ap-

ply softmax to the alpha masks across the slot dimension,
and use them as mixture weights to obtain the reconstruc-
tion ÎtÑt`n (Eq. 2). Our reconstruction loss is an L2 loss
between the input and reconstructed flow,

Lrecon “
1

Ω

ÿ

pPΩ

|ItÑt`nppq ´ ÎtÑt`nppq|
2 (3)

where p is the pixel index, and Ω is the entire spatial grid.

Temporal Consistency. The segmentation computed for
the current frame should be identical irrespective of whether
the ‘second’ frame is consecutive, or earlier or later in
time. We consider the flow fields computed from vari-
ous temporal gaps as an input set, i.e. tItÑt`n1 , ItÑt`n2u,
n1, n2 P t´2,´1, 1, 2u. We randomly sample two flow
fields from this set and pass them through the model (Φp¨q),
outputting the flow reconstruction and alpha masks for each.
As the reconstruction is commutative, it is not guaranteed
that the same slot will always output the background layer;
therefore, we use a permutation-invariant consistency loss:

Lcons “
1

Ω
minp

ÿ

pPΩ

|α1
tÑt`n1

ppq ´ α1
tÑt`n2

ppq|2,

ÿ

pPΩ

|α1
tÑt`n1

ppq ´ α0
tÑt`n2

ppq|2q

We refer readers to the arXiv version for more de-
tails (https://arxiv.org/abs/2104.07658).

3. Experimental Setup
We benchmark on four different datasets that are com-

monly used for unsupervised video object segmentation,
namely DAVIS2016 [10], SegTrackv2 [7], FBMS59 [11]
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Model Sup. RGB Flow Res. DAVIS16 (J Ò) STv2 (J Ò) FBMS59 (J Ò) Runtime (sec Ó)

NLC [2] 7 X X – 55.1 67.2 51.5 11s
CUT [5] 7 X X – 55.2 54.3 57.2 103s
CIS [16] 7 X X 192ˆ 384 59.2 (71.5) 45.6 (62.0) 36.8 (63.5) 0.1s (11s)

Ours 7 7 X 128ˆ 224 68.3 58.6 53.1 0.012s

SFL [1] X X X 854ˆ 480 67.4 – – 7.9s
LVO [13] X X X – 75.9 57.3 65.1 –

COSNet [9] X X 7 473ˆ 473 80.5 – 75.6 –
MATNet [17] X X X 473ˆ 473 82.4 – – 0.55s

Table 1. Full comparison on moving object segmentation (unsupervised video segmentation). We consider three popular datasets,
DAVIS2016, SegTrack-v2 (STv2), and FBMS59. Models above the horizontal dividing line are trained without using any manual anno-
tation, while models below are pre-trained on image or video segmentation datasets, e.g. DAVIS, YouTube-VOS. Note: the numbers in
parentheses denote the additional usage of significant post-processing, e.g. multi-step flow, multi-crop, temporal smoothing, CRFs.

and Moving Camouflaged Animals (MoCA) [6].
We use two different evaluation metrics, depending on

whether pixel-wise annotations or bounding boxes are pro-
vided. For DAVIS2016, SegTrackv2 and FBMS59, pixel-
wise segmentation is provided; thus we report the standard
metric, region similarity (J ), computing the mean over the
test set. For FBMS59 and SegTrackv2, we follow the com-
mon practice [4, 16] and combine multiple objects as one
single foreground. As the MoCA dataset provides only
bounding box annotations, we evaluate for the detection
task and report results in the form of detection success rate,
for varying IoU thresholds (τ P t0.5, 0.6, 0.7, 0.8, 0.9uq.

4. Results

4.1. Comparison with State-of-the-art
We show comparison results for different datasets in

Table 1. On DAVIS2016, we improve upon the state-of-
the-art for unsupervised methods (CIS) by a large margin
(`9.1%), approaching that of supervised methods. In ad-
dition, we argue that, motion segmentation in realistic sce-
narios, e.g. by predator or prey, is likely to require fast pro-
cessing. Our model operates at low-resolution (potentially
sacrificing some accuracy) with over 80 fps. SegTrackv2
and FBMS59 occasionally include multiple objects in a sin-
gle video, and only a subset of them are moving, making it
challenging to spot all objects using flow-only input, but we
still achieve competitive performance on these datasets.

4.2. Camouflage Breaking
In addition, we also benchmark the model on camou-

flaged object detection on the MoCA dataset, where visual
cues are often less effective than motion cues. We report
quantitative results in Table 2 and show qualitative results
in Figure 2. Our model significantly outperforms CIS, and
even COSNet [9] (among the top supervised approaches on
DAVIS). We conjecture that COSNet’s weaker performance
is due to its sole reliance on visual appearance (which is dis-
tracting for MoCA) rather than using motion inputs. This is

particularly interesting, as it clearly indicates that no single
information cue is able to do the task perfectly, echoing the
two-stream hypothesis [3] that both appearance and motion
are essential to visual systems.

4.3. Limitations
We note the following limitations of the proposed ap-

proach and treat them as future work. first, we only use two
slots in this paper i.e. foreground and background. In cases
with multiple independently moving objects, it may be de-
sirable to further separate these objects into different layers.
Second, we have only explored motion-only (optical flow)
as input, which significantly limits the model in segment-
ing objects when flow is uninformative or incomplete (as
in Fig. 2, right); however, the self-supervised video object
segmentation objective is applicable also to a two-stream
approach, and so RGB could be incorporated. Third, the
current method may fail when optical flow is noisy or low-
quality (Fig. 2, left); jointly optimizing flow and segmenta-
tion is a possible way forward in this case.

5. Conclusion
In this paper, we present a self-supervised model for

motion segmentation. The algorithm takes only flow as
input, and is trained without any manual annotation, sur-
passing previous self-supervised methods on public bench-
marks such as DAVIS2016, narrowing the gap with su-
pervised methods. On the more challenging camouflage
dataset (MoCA), our model actually compares favourably
to the top approaches in video object segmentation that
are trained with heavy supervision. As computation power
grows and more high quality videos become available, we
believe that self-supervised learning algorithms can serve as
a strong competitor to the supervised counterparts for their
scalability and generalizability.
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Figure 2. Qualitative results. On DAVIS2016 (left), our method is able to segment a variety of challenging objects such as people, animals,
and vehicles, often on-par with top supervised approaches. On MoCA (right), our model is able to accurately segment well-camouflaged
objects even when previous supervised methods fail completely. We show a failure case (left) where the splash created by the person is
incorrectly included, and another failure case (right) where the animal is only partially moving and thus partially segmented.

Success Rate

Model Sup. RGB Flow J Ò τ “ 0.5 τ “ 0.6 τ “ 0.7 τ “ 0.8 τ “ 0.9 SRmean

COD (two-stream) [6] X X X 55.3 0.602 0.523 0.413 0.267 0.088 0.379
COSNet [9] X X 7 50.7 0.588 0.534 0.457 0.337 0.167 0.417
MATNet [17] X X X 64.2 0.712 0.670 0.599 0.492 0.246 0.544

CIS (post-processing) 7 X X 54.1 0.631 0.542 0.399 0.210 0.033 0.363
Ours 7 7 X 63.4 0.742 0.654 0.524 0.351 0.147 0.484

Table 2. Comparison results on MoCA dataset. We report the successful localization rate for various thresholds τ (see Section 3). Both
CIS and Ours were pre-trained on DAVIS and finetuned on MoCA in a self-supervised manner. Note that, our method achieves comparable
Jaccard (J ) to MATNet (2nd best model on DAVIS), without using RGB inputs and without any manual annotation for training.

Grant Visual AI (EP/T028572/1).
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