

Introduction:

We introduce an approximate solver for lifted disjoint paths (LDP) [1] problems and integrate it into a tracking framework to make LDP based tracking applicable to large and crowded video sequences.

LDP :

- \succ Flow network G = (V, E)
- \blacktriangleright Lifted graph G' = (V', E')

(encoding higher order information)

- \succ Costs c and c' between detections
- \succ Find 0/1 flow y and 0/1 lifted edge activations y' with: min $\langle c, y \rangle + \langle c', y' \rangle$
- \succ $y'_{vw} = 1$, iff flow from v to w

Method:

- 1. Calculate lightweight pairwise costs between detection pairs
- 2. Create sparse LDP graphs based on the costs
- 3. Solve the problem with our novel approximate LDP solver

Approximate LDP solver:

- \succ Polynomial complexity (instead of exponential complexity)
- > Lagrangean (dual) decomposition into small tractable subproblems
- > Main subproblems:
- All edges going out from a node (outflow subproblem)
- All edges going to a node (inflow subproblem)
- \succ Message passing improves dual solution (lower bound)
- Propagating cost from lifted to base edges within each in/outflow subproblem \rightarrow high quality primal solution by solving minimum cost flow problem

Higher Order Multiple Object Tracking for Crowded Scenes Timo Kaiser^{*2} Bodo Rosenhahn² Paul Swoboda¹ Andrea Hornakova*1 Roberto Henschel²

¹Computer Vision and Machine Learning Max Planck Institute for Informatics Saarbrücken, Germany

Overall Framework:

*Equal contribution

²Institute for Image Processing Leibniz University Hanover Hannover, Germany

Evaluation:

[1] Andrea Hornakova, Roberto Henschel, Bodo Rosenhahn, and Paul Swoboda. Lifted disjoint paths with application in multiple object tracking. In ICML, July 2020. [2] Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers, Ian Reid, Stephan Roth, Konrad Schindler, and Laura Leal-Taixé. Mot20: A benchmark for multi object tracking in crowded scenes.arXiv:2003.09003[cs], Mar. 2020. [3] Anton Milan, Laura Leal-Taixé, Ian Reid, Stephan Roth, and Konrad Schindler. MOT16: A benchmark for multi-object tracking.arXiv:1603.00831 [cs], Mar. 2016.

Method	ΜΟΤΑ	IDF1
pLift (ours)	58.9	56.5
Lif_T [1]	_	-
pLift (ours)	60.5	65.6
Lif_T [1]	60.5	65.6
pLift (ours)	61.7	66.1
Lif_T [1]	61.3	64.7

Table 1: Tracking results compared to Lif_T with optimal LDP solver

Extends the applicability of the LDP model to massive sequences

Similar tracking results as with an optimal LDP solver

