

Xavier

Multiple object tracking using Mixture Density Networks for trajectory estimation

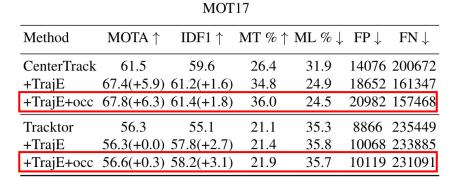
Motivation

Exploit trajectory information for MOT

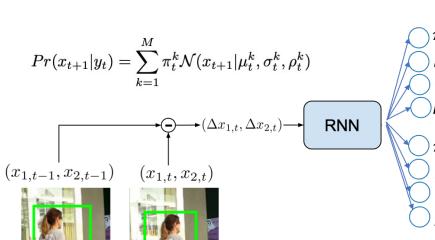
We built TrajE, a lightweight trajectory estimator that uses mixture density networks and beam search to forecast trajectories. We also use these trajectories to reconstruct tracks during an occlusion. We incorporate TrajE into two MOT trackers, boosting their performance.

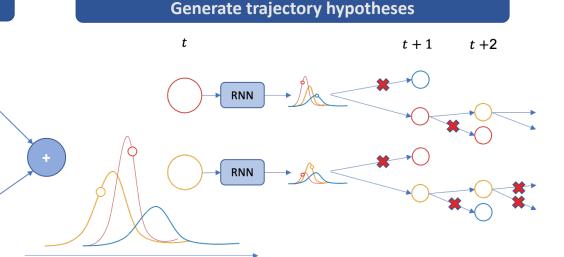
Conclusion: exploiting trajectory forecasting is a natural way to improve tracking.

Results


Qualitative results

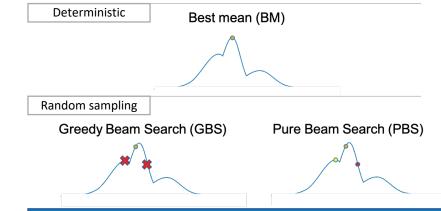
Baseline





Mixture Density Networks

Projections of the object in the next time step



Displacement (x, y)

Beam search

Trajectory exploration strategies

Occlusion reconstruction

Use forecasted trajectory to reconstruct tracks

Loss function

$$\mathcal{L}(\mathbf{x}) = \sum_{t=1}^T -\log \left(\sum_k \pi_t^k \mathcal{N}(x_{t+1}|\mu_t^k, \sigma_t^k,
ho_t^k)
ight)$$

$$\pi_t^k = \frac{\exp(\hat{\pi}_t^k(1+b))}{\sum_{k'=1}^M \exp(\hat{\pi}_t^{k'}(1+b))}$$

$$\sigma_t^k = \exp(\hat{\sigma}_t^k - b)$$