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Abstract

In this work, we show that trajectory estimation can be-
come a key factor for multiple object tracking, and present
TrajE, a trajectory estimator based on recurrent mixture
density networks, as a generic module that can be added
to existing object trackers. To provide several trajectory hy-
potheses, our method uses beam search. Also, relying on
the same estimated trajectory, we propose to reconstruct a
track after an occlusion occurs. We integrate TrajE into two
state of the art tracking algorithms, CenterTrack [7] and
Tracktor [1], boosting their respective performances in the
MOTChallenge 2017 test set by 6.3 and 0.3 points in MOTA
score, and 1.8 and 3.1 in IDF1.

1. Introduction

In this work, we propose to use trajectory estimation
for the purpose of multiple object tracking. We introduce
TrajE, a Trajectory Estimator based on a recurrent mixture
density network, that learns to estimate the underlying dis-
tribution of an object trajectory. By sampling from such
a distribution, multiple hypotheses for the most likely po-
sition of the object can be forecasted, giving the tracker a
prior on the subsequent object position. We combine this
model with a beam search technique in order to explore
multiple trajectory hypotheses per object. We provide a
lightweight implementation of the model, designing TrajE
as a single layer recurrent neural network, capable of esti-
mating the objects trajectories.

We have trained TrajE with pedestrian trajectories in the
MOT challenge dataset [5], and included it as the module of
motion estimation for two existing state of the art multiple
object trackers, CenterTrack [7] and Tracktor [1].

The contributions of this work are (i) we show empiri-
cally that trajectory estimation can be a key factor for a bet-
ter tracking performance, (ii) we build TrajE, a lightweight
model for trajectory estimation based on mixture density
networks that can be used as a generic motion model for
many trackers, (iii) we add it to two state of the art multiple

RNN

Figure 1. Concept of TrajE. We train a Recurrent Neural Network
to estimate a mixture of Gaussians that model the object trajectory.
From it, several hypotheses (B) of the object position in the next
time step are sampled.

object trackers, boosting their performance by a consider-
able margin, setting a new state of the art for CenterTrack +
TrajE in the MOT17 dataset.

2. Related Work

Multiple object tracking. Advances in object detection
have allowed multiple object trackers to rely on frame-by-
frame detections. In consequence, most current algorithms
follow the tracking-by-detection paradigm, addressing the
tracking problem in two steps: (i) object detection and (ii)
association of detections through time to form trajectories.

Trajectory estimation. [6] classifies the different hu-
man trajectory prediction methods, based on the model: (i)
Physics-based methods, where motion is predicted by dy-
namics equations based on physical models; (ii) Pattern-
based methods, where the dynamics are learned from data;
and (iii) Planning-based methods, where there is a reason-
ing on the agent actions. These models can use (or not)
available contextual cues, such as (i) Target agent cues,
which are available target agent information; (ii) Dynamic
environmental cues, where the target agent is aware of other
agents; and (iii) Static environmental cues, where the target
agent is aware of the environment information (e.g. static
obstacles, such as trees or buildings).
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Figure 2. Visualization of the beam search and occlusion handling. First, B (here, B = 2) hypotheses of where the object could be in the
next time step are sampled from the generated trajectory distribution. If a detection is associated to a track, the beam search corresponding
to that track is reset. If no detection is associated to an active track, several hypotheses are sampled from the trajectory distribution and
pruned (red crosses) in the next time step to keep B hypotheses. If the track is recovered (a detection is assigned to the track again), and the
estimated trajectory is coherent, the computed trajectory during the lost state of the track is added to the object track. The occlusion-filling
bounding boxes are generated using the centroids of the estimated trajectory, and the width and height of the new detection.

Lately, the trend in the field is to use pattern-based meth-
ods. They follow the Sense - Learn - Predict paradigm, and
learn motion behaviors by fitting different function approx-
imators (i.e. neural networks, hidden Markov models, or
Gaussian processes) to data.

In this work, we propose to use the trajectory informa-
tion for the purpose of multiple object tracking, and imple-
mented TrajE for this purpose.

3. Multiple Object Tracking using MDNs
In this section we introduce TrajE, the main techniques

that form it, the baseline trackers where we have integrated
TrajE, and experiments.

Mixture Density Networks. TrajE estimates indepen-
dently each object trajectory by using a recurrent (GRU)
MDN (Mixture Density Network) [3]. Its input is a point,
i.e. the centroid of the detection in t or the estimated tra-
jectory from t− τ to t, and its output are the parameters of
M Gaussians (we set M = 5), to form a GMM that mod-
els the evolution of the trajectory in t+ 1. Figure 1 depicts
this concept. From such a distribution, we sample a set of
hypotheses for the object position in the next time step.

Biased sampling. Directly sampling from the generated
distribution leads to a huge space of possible trajectories per
object, which may not be the best solution. To palliate this,
we bias (sharpen) the distribution as in [4] by increasing the
weight of a Gaussian forming the probability distribution,
and reducing the variance by a bias b factor.

Beam search. We use beam search for multiple trajec-
tory hypotheses. Beam search is a well known exploration
technique in Natural Language Processing (NLP), used in

tasks like machine translation. Its core idea is to explore a
finite set of possibilities, known as beam width B, in order
to maximize the likelihood of a sentence being outputted.
We adapt beam search for trajectory estimation to keep sev-
eral trajectory hypotheses alive. First, we sample B tra-
jectory hypotheses from the generated distribution. Then,
these B hypotheses are used to detect the object in the next
frame. If the object is detected, the beam search is reset.
If it is still missing, we input the B trajectory hypotheses
to B instances of TrajE, and sample from each one B new
hypotheses, ending up with B2. To avoid the exponential
growth, these B2 samples are pruned to B samples by us-
ing a maximum likelihood criteria.

Exploration strategies. To generate trajectories, we
propose three approaches based on the exploration strategy.
The first one is the Best Mean (BM), which takes the mean
value of the Gaussian with highest weight from the Gaus-
sians forming the trajectory distribution outputted by the
MDN. The second one is a Greedy Beam Search (GBS).
It samples from the trajectory distribution, and it takes the
sample with highest likelihood at every time step. The last
strategy is the Pure Beam Search (PBS), which uses all B
hypotheses to forward the track in B possible ways. If a
detection is associated to the track, the best beam given the
historic is chosen in order to keep a single detection per
track at every time step. Note that, for B = 1, both GBS
and PBS strategies become the same.

Occlusion reconstruction. If a track is recovered after
an occlusion, we can use the estimated trajectory to recon-
struct the track while lost. In Figure 2, we show an example
of the system handling an occlusion.
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Baselines. We integrated TrajE, into two existing multi-
ple object trackers, CenterTrack [7] and Tracktor [1].
Both are defined as trackers-by-regression, meaning that, by
”regressing” the detections in t − 1 to detections in t, they
are able to assign the newly detected object in t to the same
track where the original object in t− 1 belonged.
CenterTrack extends CenterNet object detector to associate
detections over time by feeding the model two consecutive
images. To further boost their performance, the model com-
putes, as motion estimation, the offset between detections in
two consecutive time steps.
Tracktor regresses the tracked objects using the ROI-
pooling layer present in Faster-RCNN, as if they were ob-
ject proposals computed by the network. Also, it uses re-
identification with siamese networks, and a motion model
based on the Constant Velocity (CV) assumption and Cam-
era Motion Compensation (CMC).
We substitute the motion estimation of both trackers with
TrajE, which forecasts the objects trajectories, and allows
to reconstruct occluded tracks by using such information.

3.1. Experiments

Experiments are performed on the MOTChallenge 2017
(MOT17) dataset, which contains 14 video sequences
recording pedestrians (7 for training, 7 for testing) with
both static and moving camera, recorded in the wild (uncon-
strained environments) in different locations. For both Cen-
terTrack and Tracktor, we use their provided object detec-
tion models, and the re-identification in the case of Tracktor.

Training. To train TrajE, we minimize the negative log-
likelihood between an estimated distribution and a ground
truth sample for every time step. We used MOT17 data by
sampling random trajectories of 100 time steps from objects
in different sequences. Also, we apply noise to the input se-
quences to make our model more robust to noisy detections.

Incremental study. Table 1 and Table 2 present a study
on whether CenterTrack and Tracktor benefit from estimat-
ing the object trajectories.
The starting point are the trackers without and with their
own motion estimation. We then swap this motion estima-
tion (OFF or CV+CMC in tables 1, 2) for TrajE, and study
the impact of the three exploration strategies, Best Mean
(BM), Greedy Beam Search (GBS), and Pure Beam Search
(PBS) with and without occlusion reconstruction using the
estimated trajectories. To see whether the benefits of includ-
ing trajectory information into object trackers generalize,
we adapt the Kalman filter implemented in SORT [2] for
trajectory estimation, by generating trajectories for a track
whose state is set to lost, while including the new detections
assigned to the track whenever its state is set to active.
The first observation is that any provided motion informa-
tion is helpful to the trackers. In Table 1, by computing
the motion with an offset head (OFF) for CenterTrack, and

MOTA ↑ IDF1 ↑ HOTA ↑ DetA ↑ AssA ↑ IDSW ↓

CenterTrack 67.4 62.7 63.0 69.3 57.2 1356

+OFF 67.7 63.8 63.8 69.2 58.8 1077

+Kalman 68.7 64.4 64.0 70.9 57.7 1642
+BM 68.4 65.6 64.9 69.9 60.2 833
+GBS 68.9 ± 0.3 65.6 ± 0.5 65.1 ± 0.5 70.3 ± 0.3 60.2 ± 1.0 857
+PBS 69.0 ± 0.2 66.0 ± 0.1 65.3 ± 0.2 70.4 ± 0.1 60.5 ± 0.4 789

+Kalman+occ 68.8 64.6 64.1 71.2 57.8 1382
+BM+occ 69.1 65.9 65.4 70.6 60.5 732
+GBS+occ 69.5 ± 0.2 66.0 ± 0.5 65.5 ± 0.5 70.9 ± 0.2 60.6 ± 1.1 751
+PBS+occ 69.6 ± 0.1 66.3 ± 0.1 65.7 ± 0.2 71.0 ± 0.1 60.9 ± 0.4 706

Table 1. Incremental study on CenterTrack+TrajE with the explo-
ration strategies, GBS, PBS, and BM, and CenterTrack+Kalman
filter for trajectory estimation. For PBS and GBS we depict the
mean and variance over 5 runs. OFF stands for offset predic-
tion present in CenterTrack, and occ for occlusion reconstruc-
tion from trajectories. We compare the performance on the full
MOT17 training set using the Faster R-CNN public detections,
with bias = 1, B = 5.

MOTA ↑ IDF1 ↑ HOTA ↑ DetA ↑ AssA ↑ IDSW ↓

Tracktor v2 60.6 62.0 60.7 61.6 59.7 913

+CV 61.2 63.9 62.0 61.9 62.1 557
+CV+CMC 61.7 64.9 62.8 62.1 63.5 269

+Kalman 61.4 65.2 63.1 62.0 64.2 462
+BM 61.6 66.4 63.7 62.1 65.3 399
+GBS 61.4 ± 0.1 66.6 ± 0.5 63.6 ± 0.3 62.0 ± 0.1 65.4 ± 0.6 407
+PBS 61.5 ± 0.1 66.7 ± 0.5 63.7 ± 0.3 62.1 ± 0.1 65.5 ± 0.6 369

+Kalman+occ 61.2 66.9 64.4 62.8 66.2 506
+BM+occ 62.2 66.8 64.2 62.8 65.7 399
+GBS+occ 61.9 ± 0.1 66.9 ± 0.5 64.1 ± 0.3 62.5 ± 0.1 65.7 ± 0.6 409
+PBS+occ 62.0 ± 0.1 67.0 ± 0.4 64.2 ± 0.3 62.6 ± 0.1 65.8 ± 0.6 370

Table 2. Incremental study on Tracktor+TrajE with the exploration
strategies, GBS, PBS, and BM, and Tracktor+Kalman filter for
trajectory estimation. For PBS and GBS we depict the mean and
variance over 5 runs. CV stands for Constant Velocity assumption,
CMC for Camera Motion Compensation, and occ for occlusion
reconstruction from trajectories. We compare the performance on
the full MOT17 training set using the Faster R-CNN public detec-
tions, with bias = 1, B = 5.

Table 2, by assuming a constant velocity (CV), and using
Camera Motion Compensation (CMC) in Tracktor.

Trajectory estimation. Following the incremental
study, we observe that, by adding TrajE, both trackers con-
sistently improve in all metrics. As TrajE has a sampling
step, the mean and variance for five runs is depicted.

TrajE parameters. In Figure 3 and Figure 4, we study
the impact of the bias and beam width (B) values for the
different trajectory estimation strategies.
The results show how, by using beam search, the trackers
benefit from the several hypotheses, and how biasing the
outputs of the MDN can become crucial in the trajectory
estimation. Regarding the exploration strategies, PBS has
better overall results than GBS. Interestingly, by using the
BM strategy, which is equivalent to use a beam width of
B = 1 with bias → ∞, TrajE also boosts the performance
of the trackers by a considerable margin, and can be a good
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alternative when a faster computation is mandatory.
Comparison with state of the art. In Table 3 we com-

pare the two trackers using TrajE with the PBS setting that
lead to the best results on the training set (bias = 1,B = 5),
with and without occlusion reconstruction, with respect to
the state of the art of multiple object trackers in the test set
of the MOTChallenge dataset. By using TrajE to predict tra-
jectories, their performance in both MOTA and IDF1 scores
is boosted by a considerable margin, and set a new state of
the art results in the case of CenterTrack + TrajE, with an
increase of 5.9, and 6.3 points in the MOTA score without
and with occlusion reconstruction respectively.
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Figure 3. Experiments over TrajE parameters bias and beam width
B for CenterTrack using TrajE or Kalman with occlusion recon-
struction. The y-axis corresponds to the metric score, the x-axis
to the bias, and the columns to the different B values. Solid lines
correspond to the average value over five runs, and the transparent
region limits correspond to the maximum and minimum values.
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Figure 4. Experiments over TrajE parameters bias and beam width
B for Tracktor using TrajE or Kalman with occlusion reconstruc-
tion. The y-axis correspond to the metric score, the x-axis to the
bias, and the columns to the different B values. Solid lines cor-
respond to the average value over five runs, and the transparent
region limits correspond to the maximum and minimum values.

MOT17 [5]

Method MOTA ↑ IDF1 ↑ MT % ↑ ML % ↓ FP ↓ FN ↓

Online, TrajE without occlusion reconstruction

CenterTrack+TrajE 67.4(+5.9) 61.2(+1.6) 34.8 24.9 18652 161347
CenterTrack 61.5 59.6 26.4 31.9 14076 200672
GSM 56.4 57.8 22.2 34.5 14379 230174
Tracktor(v2)+TrajE 56.3(+0.0) 57.8(+2.7) 21.4 35.8 10068 233885
Tracktor(v2) 56.3 55.1 21.1 35.3 8866 235449
FAMNet 52.0 48.7 19.1 33.4 14138 253616

Offline, TrajE with occlusion reconstruction

CenterTrack+TrajE 67.8(+6.3) 61.4(+1.8) 36.0 24.5 20982 157468
Lif T 60.5 65.6 27.0 33.6 14966 206619
MPNTrack 58.8 61.7 28.8 33.5 17413 213594
Tracktor(v2)+TrajE 56.6(+0.3) 58.2(+3.1) 21.9 35.7 10119 231091
TT17 54.9 63.1 24.4 38.1 20236 233295
TPM 54.2 52.6 22.8 37.5 13739 242730
JBNOT 52.6 50.8 19.7 35.8 31572 232659

Table 3. Comparison integrating TrajE to CenterTrack and Track-
tor against the state of the art methods on the test set of MOTChal-
lenge 17 dataset using public detections. In bold tracker + our
method (TrajE). In red the best result, in blue the second best. The
tracking baselines are CenterTrack+OFF, Tracktor+CV+CMC.

4. Conclusions
We have introduced TrajE, a lightweight trajectory esti-

mator based on mixture density networks and beam search,
capable of significantly increasing the performance of exist-
ing multiple object trackers. Also, with the same estimated
trajectory, we propose to do a track reconstruction when the
object is lost due occlusions. Our experiments adding our
trajectory estimator to CenterTrack, and Tracktor provide
very interesting insights on how the trajectory estimation
can help in the tracking, while establishing a new state of
the art in the MOTChallenge 2017 dataset.
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